``` class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 (2025)

首页```class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers - 2 # 总隐藏层数 for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden // 3: act = nn.Tanh() elif layer_idx < 2 * (total_hidden // 3): act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5 / 3) elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)```ValueError: Unsupported nonlinearity swish

时间: 2025-03-19 13:19:39 浏览: 8

<think>好的,我现在需要解决用户提供的PyTorch代码中的问题。用户遇到了ValueError,提示“Unsupported nonlinearity swish”。首先,我得仔细看一下代码,找出哪里用到了这个激活函数,以及初始化部分可能哪里出错了。用户定义的MLP类在初始化时,构建了一个包含多个线性层、激活函数和Dropout的序列。在中间隐藏层部分,根据层数的不同,选择了不同的激活函数:前三分之一用Tanh,中间用Hardswish(注释里提到原本是SiLU,即Swish),最后用自定义的GaussSwish。看起来问题可能出现在激活函数的选择和初始化参数的匹配上。在_init_weights方法中,当检查线性层的激活函数类型时,如果是Tanh,使用Xavier初始化;如果是Hardswish或GaussSwish,则尝试使用Kaiming初始化,并指定nonlinearity='swish'。这里的问题可能就在这里,因为PyTorch的Kaiming初始化可能不支持'swish'作为非线性参数。查阅PyTorch的文档,Kaiming初始化支持的nonlinearity参数包括'relu'、'leaky_relu'、'selu'、'tanh'、'sigmoid'等,但不包括'swish'。当用户尝试使用'swish'时,就会触发ValueError,因为不被支持。接下来需要确认用户代码中激活函数的类型。Hardswish是PyTorch内置的,而GaussSwish是用户自定义的。但不管怎样,初始化时使用的nonlinearity参数是否正确?比如,对于Hardswish,应该对应的非线性参数可能不是'swish',而是'hardswish'或者其他。但PyTorch可能没有对应的参数,或者用户需要使用其他替代方式。解决方案可能是,当激活函数是Hardswish或Swish时,使用现有的、被支持的nonlinearity参数。例如,Swish可以近似为'relu',或者查看是否有其他更接近的参数。但可能更直接的办法是,避免在初始化时指定nonlinearity='swish',而是根据激活函数的类型选择适当的初始化方式。比如,对于Hardswish,可能没有对应的初始化建议,但Swish通常和He初始化搭配使用,此时可以尝试使用nonlinearity='relu',或者使用默认的初始化方式。或者,用户可能需要手动调整初始化参数。另一个可能的问题是,用户是否正确导入了GaussSwish类?如果这个类是自定义的,并且没有被正确实现,也可能导致问题。但根据错误信息,问题出在初始化时的'swish'参数,所以主要问题还是在_init_weights方法中的nonlinearity参数。所以,正确的做法是将Kaiming初始化的nonlinearity参数从'swish'改为被支持的类型,例如,如果激活函数是Hardswish,可能没有对应的参数,但可以尝试使用'leaky_relu'或者其他。或者,可能用户原本想用SiLU(即Swish),而PyTorch的SiLU可能对应的初始化参数是'silu'?但需要确认PyTorch版本是否支持。例如,在PyTorch 1.7及以上版本中,SiLU被引入,其对应的初始化参数可能为'silu'。如果用户使用的是较旧的版本,可能不支持。或者,可能用户需要将nonlinearity参数改为'relu',尽管这不准确,但可能避免错误。或者,用户可能应该将初始化部分的nonlinearity参数改为'leaky_relu',并调整相应的负斜率值,但这会影响初始化效果。另一种方法是直接使用默认的初始化方式,或者使用Xavier初始化。总结,错误的原因是Kaiming初始化使用了不被支持的'swish'参数。解决办法是替换成支持的参数,比如如果激活函数是Hardswish,可能使用'relu',或者根据激活函数的特性选择其他参数。或者,可能需要修改激活函数的选择,以匹配现有的初始化参数支持。</think>这个错误发生在权重初始化阶段,主要原因是PyTorch的`kaiming_normal_`初始化方法不支持`nonlinearity='swish'`参数。以下是逐步分析和解决方案:---### **错误定位分析**1. **问题代码段**: ```python elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') # 这里报错 ```

最低0.47元/天开通会员,查看完整答案

```class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden / act = nn.Tanh() elif layer_idx < 2 * (total_hidden / act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5 elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)```ValueError: Unsupported nonlinearity swish (1)

成为会员后, 你将解锁

```class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden / act = nn.Tanh() elif layer_idx < 2 * (total_hidden / act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5 elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)```ValueError: Unsupported nonlinearity swish (2)

```class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden / act = nn.Tanh() elif layer_idx < 2 * (total_hidden / act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5 elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)```ValueError: Unsupported nonlinearity swish (3) 下载资源随意下

```class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden / act = nn.Tanh() elif layer_idx < 2 * (total_hidden / act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5 elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)```ValueError: Unsupported nonlinearity swish (4) 优质VIP博文免费学

```class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden / act = nn.Tanh() elif layer_idx < 2 * (total_hidden / act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5 elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)```ValueError: Unsupported nonlinearity swish (5) 优质文库回答免费看

```class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden / act = nn.Tanh() elif layer_idx < 2 * (total_hidden / act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5 elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)```ValueError: Unsupported nonlinearity swish (6) C知道免费提问

```class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden / act = nn.Tanh() elif layer_idx < 2 * (total_hidden / act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5 elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)```ValueError: Unsupported nonlinearity swish (7) 付费资源9折优惠

相关推荐

```class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden / act = nn.Tanh() elif layer_idx < 2 * (total_hidden / act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5 elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)```ValueError: Unsupported nonlinearity swish (8)

mlp.zip_MLP_MLP matlab_between_mlp 0 to 9

标题中的"mlp.zip_MLP_MLP matlab_between_mlp 0 to 9"指的是一个使用MATLAB实现的多层感知器(MLP)神经网络,该网络被设计用于区分0到9之间的数字。多层感知器是人工神经网络的一种常见类型,特别适合于分类任务,...

```class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden / act = nn.Tanh() elif layer_idx < 2 * (total_hidden / act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5 elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)```ValueError: Unsupported nonlinearity swish (9)

MLP11.rar_MLP_Neural networks

2. **隐藏层(Hidden Layers)**:隐藏层是MLP的核心,包含多个神经元,每个神经元执行加权求和和激活函数运算。隐藏层可以有多个,每个层的神经元数量可自定义,增加了模型的表达能力。 3. **输出层(Output Layer...

```class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden / act = nn.Tanh() elif layer_idx < 2 * (total_hidden / act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5 elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)```ValueError: Unsupported nonlinearity swish (10)

MLP.tar.gz_MLP model_MLP neural_The Next

A multilayer perceptron (MLP) is a feedforward artificial neural network model that maps sets of input data onto a set of appropriate outputs. A MLP consists of multiple layers of nodes in a directed ...

```class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden / act = nn.Tanh() elif layer_idx < 2 * (total_hidden / act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5 elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)```ValueError: Unsupported nonlinearity swish (11)

import torch from torch import nn class MLP(nn.Module): def __init__(self, input_dim, num_class, hidden_dim) -> None: super().__init__() self.hidden_dim = hidden_dim self.mlp = nn.Sequential(*[ nn.Linear(input_dim, self.hidden_dim), nn.ReLU(), nn.Linear(self.hidden_dim, self.hidden_dim), nn.ReLU(), nn.Linear(self.hidden_dim, self.hidden_dim), nn.ReLU(), nn.Linear(self.hidden_dim, num_class) ]) def forward(self, x): return self.mlp(x)

其输入特征维度为 input_dim,输出类别数为 num_class,隐藏层维度为 hidden_dim。其中,nn.Linear 表示全连接层,nn.ReLU 表示激活函数 ReLU。forward() 方法定义了模型的前向传播过程,即输入特征经过多个全连接层...

```class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden / act = nn.Tanh() elif layer_idx < 2 * (total_hidden / act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5 elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)```ValueError: Unsupported nonlinearity swish (12)

class GaussSwish(nn.Module): def __init__(self, c=1): super(GaussSwish, self).__init__() self.c = c def forward(self, x): return x * torch.sigmoid(x - self.c)class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 layers.append(nn.Linear(input_dim, hidden_dim)) layers.append(nn.BatchNorm1d(hidden_dim)) layers.append(nn.Dropout(dropout)) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers - 2 # 总隐藏层数 for layer_idx in range(total_hidden): # 线性层 + 归一化 layers.append(nn.Linear(hidden_dim, hidden_dim)) layers.append(nn.BatchNorm1d(hidden_dim)) # 渐进式激活函数选择 if layer_idx < total_hidden // 3: act = nn.Tanh() #elif layer_idx < 2 * (total_hidden // 3): # act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): """Xavier初始化""" for m in self.modules(): if isinstance(m, nn.Linear): nn.init.xavier_normal_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)更改网络结构为这个后,在gpu的训练变慢

class MLP(nn.Module): def forward(self, x): return checkpoint_sequential(self.net, len(self.net)//2, x) # 分段保存计算图 - 通过牺牲部分计算时间换取显存优化 $\boxed{6. \text{结构调优}}$ $\...

```class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden / act = nn.Tanh() elif layer_idx < 2 * (total_hidden / act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5 elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)```ValueError: Unsupported nonlinearity swish (13)

class GaussSwish(nn.Module): def __init__(self, c=1): super(GaussSwish, self).__init__() self.c = c def forward(self, x): return x * torch.sigmoid(x - self.c)class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=20, num_layers=10, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers - 2 # 总隐藏层数 for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden // 4: act = nn.Tanh() elif layer_idx <(total_hidden // 4)*2: act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) #layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5/3) elif isinstance(m.act, nn.Hardswish): # 使用PyTorch支持的hardswish nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='relu') elif isinstance(m.act, GaussSwish): # 自定义Swish使用Xavier初始化 nn.init.xavier_normal_(m.weight, gain=1.676) else: nn.init.xavier_uniform_(m.weight) # 偏置项保持原逻辑 if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)代码中神经网络的GaussSwish激活函数,公式更改为:-x⋅e^-((x^2)/2)+x/(1+e^-x)

class GaussSwish(nn.Module): def __init__(self, c=1): super(GaussSwish, self).__init__() self.c = c def forward(self, x): gauss_term = -x * torch.exp(-0.5 * (x ** 2)) # 高斯部分:-x * exp(-(x^2)...

```class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden / act = nn.Tanh() elif layer_idx < 2 * (total_hidden / act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5 elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)```ValueError: Unsupported nonlinearity swish (14)

class MLP(nn.Module): def __init__( self, input_size: int, output_size: int, n_hidden: int, classes: int, dropout: float, normalize_before: bool = True ): super(MLP, self).__init__() self.input_size = input_size self.dropout = dropout self.n_hidden = n_hidden self.classes = classes self.output_size = output_size self.normalize_before = normalize_before self.model = nn.Sequential( nn.Linear(self.input_size, n_hidden), nn.Dropout(self.dropout), nn.ReLU(), nn.Linear(n_hidden, self.output_size), nn.Dropout(self.dropout), nn.ReLU(), ) self.after_norm = torch.nn.LayerNorm(self.input_size, eps=1e-5) self.fc = nn.Sequential( nn.Dropout(self.dropout), nn.Linear(self.input_size, self.classes) ) self.output_layer = nn.Linear(self.output_size, self.classes) def forward(self, x): self.device = torch.device('cuda') # x = self.model(x) if self.normalize_before: x = self.after_norm(x) batch_size, length, dimensions = x.size(0), x.size(1), x.size(2) output = self.model(x) return output.mean(dim=1) class LabelSmoothingLoss(nn.Module): def __init__(self, size: int, smoothing: float, ): super(LabelSmoothingLoss, self).__init__() self.size = size self.criterion = nn.KLDivLoss(reduction="none") self.confidence = 1.0 - smoothing self.smoothing = smoothing def forward(self, x: torch.Tensor, target: torch.Tensor) -> torch.Tensor: batch_size = x.size(0) if self.smoothing == None: return nn.CrossEntropyLoss()(x, target.view(-1)) true_dist = torch.zeros_like(x) true_dist.fill_(self.smoothing / (self.size - 1)) true_dist.scatter_(1, target.view(-1).unsqueeze(1), self.confidence) kl = self.criterion(torch.log_softmax(x, dim=1), true_dist) return kl.sum() / batch_size

这段代码中定义了一个 MLP 模型以及一个 LabelSmoothingLoss 损失函数。MLP 模型包含了多个线性层和 ReLU 激活函数,以及一个 LayerNorm 层和一个 dropout 层。LabelSmoothingLoss 损失函数主要用于解决分类问题中的...

```class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden / act = nn.Tanh() elif layer_idx < 2 * (total_hidden / act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5 elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)```ValueError: Unsupported nonlinearity swish (15)

def __init__(self, dim, num_heads, window_size=7, shift_size=0, mlp_ratio=4., qkv_bias=True, qk_scale=None, drop=0., attn_drop=0., drop_path=0., act_layer=nn.GELU, norm_layer=nn.LayerNorm): super().__init__() self.dim = dim self.num_heads = num_heads self.window_size = window_size self.shift_size = shift_size self.mlp_ratio = mlp_ratio assert 0 <= self.shift_size < self.window_size, "shift_size must in 0-window_size" self.norm1 = norm_layer(dim) self.attn = WindowAttention( dim, window_size=to_2tuple(self.window_size), num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale, attn_drop=attn_drop, proj_drop=drop) self.drop_path = DropPath(drop_path) if drop_path > 0. else nn.Identity() self.norm2 = norm_layer(dim) mlp_hidden_dim = int(dim * mlp_ratio) self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop) self.H = None self.W = None这是mlp在后续代码中的用法,你改的这个KAN能满足要求吗,不可以的话请进一步修改

def __init__(self, dim, num_heads, window_size): super().__init__() self.ws = (window_size, window_size) # 必须转为元组格式 self.relative_position_bias_table = nn.Parameter( torch.zeros((2 * self...

```class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden / act = nn.Tanh() elif layer_idx < 2 * (total_hidden / act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5 elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)```ValueError: Unsupported nonlinearity swish (16)

import torchfrom torch.nn import Sequential, Linear, ReLU, Dropout, Sigmoidclass MLPEncoderWithClassifier(torch.nn.Module): def __init__(self, in_channels, hidden_channels, out_channels=1, num_layers=2, dropout_rate=0.5): super(MLPEncoderWithClassifier, self).__init__() self.in_channels = in_channels self.hidden_channels = hidden_channels self.out_channels = out_channels self.num_layers = num_layers self.dropout = Dropout(dropout_rate) # 初始化模型 layers = [] layers.append(Linear(in_channels, hidden_channels)) layers.append(ReLU()) layers.append(Dropout(dropout_rate)) # 中间隐藏层 for _ in range(num_layers - 1): layers.append(Linear(hidden_channels, hidden_channels)) layers.append(ReLU()) layers.append(Dropout(dropout_rate)) # 输出层 layers.append(Linear(hidden_channels, out_channels)) self.mlp = torch.nn.Sequential(*layers) # **关键部分:投影层** # self.projection = Linear(in_channels, out_channels) # 让 x 变换到 z 的维度 # 分类器层 self.classifier = Linear(out_channels, 1) self.sigmoid = Sigmoid() def forward(self, x): # residual = self.projection(x) # **将 x 投影到 z 的维度** # 计算编码特征 z = self.mlp(x) # z = z + residual # **残差连接** # 通过分类器和 Sigmoid 函数得到最终预测 z = self.classifier(z) y_pred = self.sigmoid(z) # 二分类的输出 return z, y_pred # 返回中间特征和预测结果帮我画出来我的编码器结构图

def __init__(self, input_dim=784, hidden_dims=[256, 128], latent_dim=64): super().__init__() layers = [] prev_dim = input_dim for i, h_dim in enumerate(hidden_dims): layers.append(nn.Linear(prev...

```class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden / act = nn.Tanh() elif layer_idx < 2 * (total_hidden / act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5 elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)```ValueError: Unsupported nonlinearity swish (17)

super(MLP, self).__init__()

super(MLP, self).__init__()是在Python中用于调用父类(超类)的构造函数的一种方式... def __init__(self, num_layers, input_dim, hidden_dim, output_dim): super(MLP, self).__init__() # 其他初始化操作...

```class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden / act = nn.Tanh() elif layer_idx < 2 * (total_hidden / act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5 elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)```ValueError: Unsupported nonlinearity swish (18)

深度学习扩展探索:ESLII_print12《统计学习的元素》前沿分析

![深度学习扩展探索:ESLII_... # 摘要 统计学习和深度学习是机器学习领域的两大支柱,本论文首先阐述了统计学习的基础元素及其与深度学习的关联,再深入探讨了深度学习的理论基础,包括数学基础、模型架构及其训练策

```class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden / act = nn.Tanh() elif layer_idx < 2 * (total_hidden / act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5 elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)```ValueError: Unsupported nonlinearity swish (19)

【CNN与MLP性能差异】:在特定数据集上的对比分析和应用建议

本文全面探讨了卷积神经网络(CNN)和多层感知机(MLP)的基本概念、原理及其在特定数据集上的性能对比。通过理论分析和实验设计,本文对比了CNN与MLP在结构和性能上的差异,并深入分析了各自在图像识别任务和非图像...

```class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden / act = nn.Tanh() elif layer_idx < 2 * (total_hidden / act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5 elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)```ValueError: Unsupported nonlinearity swish (20)

你现在利用pytorch定义了两个神经网络,一个是3层用全连接层构造成的MLP,还有一个是图注意力网络。两个输出均是(16,307,12),均未def encode部分。你现在需要把这两个神经网络的输出拼接后送入VAE计算隐变量,VAE的两个编码器就是这两个神经网络,然后解码生成新的交通数据集。这个pytorch应该怎么写,请给我一个比较完整的pytorch代码。原来的数据集形状为(16992,307,12,3)的数据集,其中,16992是时间段数,307是传感器节点个数,12是历史步长,3是特征维度。第一个特征维度是速度,第二个特征维度是根据邻接矩阵产生的度特征,第三个特征维度是星期。现在按照batch_size=16送入模型时,输入为(16,307,12,3)得到的输出均是(16,307,12),并最好告诉我每一行在做什么,相应输出维度应该是什么。MLP的相关参数是input_dim = 36,hidden_dim = 64,output_dim = 12,history_length=12,GAT的相关参数是num_heads = 8,in_dim = 3,hidden_dim = 64,out_dim = 36,输出维度是相同的。最后,请随机生成形状为(16992,307,12,3)的数据集,按批次送入模型,让我自行看看模型的效果

def __init__(self, input_dim, hidden_dim, output_dim, history_length): super(MLP, self).__init__() self.input_dim = input_dim self.hidden_dim = hidden_dim self.output_dim = output_dim self....

```class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden / act = nn.Tanh() elif layer_idx < 2 * (total_hidden / act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5 elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)```ValueError: Unsupported nonlinearity swish (21)

你现在利用pytorch定义了两个神经网络,一个是3层用全连接层构造成的MLP,还有一个是图注意力网络。两个输出均是(16,307,12)。你现在需要把这两个神经网络作为VAE的两个编码器,将它们的输出拼接后计算隐变量,然后解码生成新的交通数据集。这个pytorch应该怎么写,请给我一个比较完整的pytorch代码。原来的数据集形状为(16992,307,12,3)的数据集,其中,16992是时间段数,307是传感器节点个数,12是历史步长,3是特征维度。第一个特征维度是速度,第二个特征维度是根据邻接矩阵产生的度特征,第三个特征维度是星期。现在按照batch_size=16送入模型得到的输出均是(16,307,12),并最好告诉我每一行在做什么,相应输出维度应该是什么。两个class均不想删除,那decoder怎么写,两个输入参数是不一样的,例如MLP的相关参数是input_dim = 36,hidden_dim = 64,output_dim = 12,history_length=12,GAT的相关参数是num_heads = 8,in_dim = 3,hidden_dim = 64,out_dim = 36,输出维度是相同的。最后,请随机生成形状为(16992,307,12,3)的数据集,按批次送入模型,让我自行看看模型的效果

def __init__(self, mlp_input_dim, mlp_hidden_dim, mlp_output_dim, mlp_history_length, gat_num_heads, gat_in_dim, gat_hidden_dim, gat_out_dim): super(VAE, self).__init__() self.mlp = MLP(mlp_input...

```class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden / act = nn.Tanh() elif layer_idx < 2 * (total_hidden / act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5 elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)```ValueError: Unsupported nonlinearity swish (22)

class MLPLayer(nn.Module)是什么

def __init__(self, input_dim, output_dim, hidden_dim): super(MLPLayer, self).__init__() self.linear = nn.Linear(input_dim, hidden_dim) self.relu = nn.ReLU() self.output = nn.Linear(hidden_dim, ...

```class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden / act = nn.Tanh() elif layer_idx < 2 * (total_hidden / act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5 elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)```ValueError: Unsupported nonlinearity swish (23)

你作为一名研究交通流量预测的硕士研究生,请你构造3层MLP作为VAE的编码器对形状为(7,1385,307,12)的交通速度集计算隐变量。其中,7是槽的个数,1385是时间段数,307是传感器节点个数,12是历史步长。我希望按batch_size=16送入MLP,最终batch_out的形状为(16,307,12)。请自己构造,不要调用别人的包,这是pytorch版本,请避免内存爆炸,直接killed等问题出现。最后,请给我随机生成形状为(7,1385,307,12)的交通速度集,并按批次送往模型,这样方便我自行运行,看模型的输出 请不要在模型中出现nn.Linear(1385*307*12, 1024),这会出现内存爆炸的情况,请给我提供比较简单易懂的pytorch代码,包括input_dim,hidden_dim等,用简单的全连接层就可以

def __init__(self, input_dim, hidden_dim, output_dim): super(Encoder,self).__init__() self.fc1 = nn.Linear(input_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, hidden_dim) self.fc3 = nn.Linear...

```class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden / act = nn.Tanh() elif layer_idx < 2 * (total_hidden / act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5 elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)```ValueError: Unsupported nonlinearity swish (24)

你作为一名研究交通流量预测的硕士研究生,你现在有一个形状为(16992,307,12,3)的数据集,其中,16992是时间段数,307是传感器节点个数,12是历史步长,3是特征维度。第一个特征维度是速度,第二个特征维度是根据邻接矩阵产生的度特征,第三个特征维度是星期。你现在想构造3层MLP计算星期特征维度相同的时间段数之间的相关性输出,请给我一份详细可行的代码,包括input_dim,hidden_dim等。并最好告诉我每一行在做什么,相应输出维度应该是什么。请用for循环按批次送入模型,避免killed或内存爆炸,最后MLP的batch_out输出最好是(16,307,12)。

def __init__(self, input_dim, hidden_dim): super(MLP, self).__init__() self.fc1 = nn.Linear(input_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, hidden_dim) self.fc3 = nn.Linear(hidden_dim, ...

```class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden / act = nn.Tanh() elif layer_idx < 2 * (total_hidden / act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5 elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)```ValueError: Unsupported nonlinearity swish (25)

你作为一名研究交通流量预测的硕士研究生,你现在有一个形状为(16992,307,12,3)的数据集,其中,16992是时间段数,307是传感器节点个数,12是历史步长,3是特征维度。第一个特征维度是速度,第二个特征维度是根据邻接矩阵产生的度特征,第三个特征维度是星期。你现在想构造3层MLP作为VAE的一个变分编码器,计算星期特征维度相同的时间段数之间的隐变量,MLP用全连接层就可以,请给我一份详细可行的代码,包括input_dim,hidden_dim等。并最好告诉我每一行在做什么,相应输出维度应该是什么。请用for循环按批次送入模型,避免killed或内存爆炸,最后MLP的batch_out输出最好是(16,307,12)。这是pytorch版本,暂时不要给我呈现完整的代码,仅需能够让我看出MLP的batch_out代码

class MLP(nn.Module): def __init__(self): super(MLP, self).__init__() self.fc1 = nn.Linear(input_dim, hidden_dim) self.fc2 = nn.Linear(hidden_dim, hidden_dim) self.fc3 = nn.Linear(hidden_dim, ...

```class MLP(nn.Module): def __init__( self, input_dim=3, hidden_dim=64, num_layers=8, dropout=0.1 # 添加Dropout ): super(MLP, self).__init__() layers = [] # 输入层 input_layer = nn.Linear(input_dim, hidden_dim) layers.append(input_layer) # 中间隐藏层(实现激活函数过渡) total_hidden = num_layers for layer_idx in range(total_hidden): linear_layer = nn.Linear(hidden_dim, hidden_dim) layers.append(linear_layer) # 渐进式激活函数选择 if layer_idx < total_hidden / act = nn.Tanh() elif layer_idx < 2 * (total_hidden / act = nn.Hardswish()#nn.SiLU() # Swish else: act = GaussSwish() # 绑定到线性层 linear_layer.act = act layers.append(act) layers.append(nn.Dropout(dropout)) # 输出层 layers.append(nn.Linear(hidden_dim, 1)) self.net = nn.Sequential(*layers) self._init_weights() def _init_weights(self): for m in self.modules(): if isinstance(m, nn.Linear): if hasattr(m, 'act'): if isinstance(m.act, nn.Tanh): nn.init.xavier_normal_(m.weight, gain=5 elif isinstance(m.act, (nn.Hardswish, GaussSwish)): nn.init.kaiming_normal_(m.weight, mode='fan_in', nonlinearity='swish') else: nn.init.xavier_uniform_(m.weight) if m.bias is not None: nn.init.constant_(m.bias, 0) def forward(self, x): return self.net(x)```ValueError: Unsupported nonlinearity swish (26)

trae-小强cloud-chrreyStudio

trae-小强cloud-chrreyStudio

```
class MLP(nn.Module):
    def __init__(
            self,
            input_dim=3,
            hidden_dim=64,
            num_layers=8,
            dropout=0.1  # 添加Dropout
    ):
        super(MLP, self).__init__()
        layers = []

        # 输入层
 (2025)
Top Articles
Latest Posts
Recommended Articles
Article information

Author: Fredrick Kertzmann

Last Updated:

Views: 6247

Rating: 4.6 / 5 (46 voted)

Reviews: 93% of readers found this page helpful

Author information

Name: Fredrick Kertzmann

Birthday: 2000-04-29

Address: Apt. 203 613 Huels Gateway, Ralphtown, LA 40204

Phone: +2135150832870

Job: Regional Design Producer

Hobby: Nordic skating, Lacemaking, Mountain biking, Rowing, Gardening, Water sports, role-playing games

Introduction: My name is Fredrick Kertzmann, I am a gleaming, encouraging, inexpensive, thankful, tender, quaint, precious person who loves writing and wants to share my knowledge and understanding with you.